Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: covidwho-1595265

ABSTRACT

Infection by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) provokes a potentially fatal pneumonia with multiorgan failure, and high systemic inflammation. To gain mechanistic insight and ferret out the root of this immune dysregulation, we modeled, by in vitro coculture, the interactions between infected epithelial cells and immunocytes. A strong response was induced in monocytes and B cells, with a SARS-CoV-2-specific inflammatory gene cluster distinct from that seen in influenza A or Ebola virus-infected cocultures, and which reproduced deviations reported in blood or lung myeloid cells from COVID-19 patients. A substantial fraction of the effect could be reproduced after individual transfection of several SARS-CoV-2 proteins (Spike and some nonstructural proteins), mediated by soluble factors, but not via transcriptional induction. This response was greatly muted in monocytes from healthy children, perhaps a clue to the age dependency of COVID-19. These results suggest that the inflammatory malfunction in COVID-19 is rooted in the earliest perturbations that SARS-CoV-2 induces in epithelia.


Subject(s)
COVID-19/immunology , Epithelial Cells/immunology , Monocytes/immunology , SARS-CoV-2/pathogenicity , Adult , B-Lymphocytes/immunology , COVID-19/pathology , Child , Coculture Techniques , Ebolavirus/pathogenicity , Epithelial Cells/virology , Gene Expression Profiling , Humans , Inflammation , Influenza A virus/pathogenicity , Lung/immunology , Myeloid Cells/immunology , Species Specificity , Viral Proteins/immunology
2.
Virology ; 559: 165-172, 2021 07.
Article in English | MEDLINE | ID: covidwho-1198236

ABSTRACT

SARS coronavirus 1 (SARS-CoV-1) causes a respiratory infection that can lead to acute respiratory distress characterized by inflammation and high levels of cytokines in the lung tissue. In this study we constructed a herpes simplex virus 1 replication-defective mutant vector expressing SARS-CoV-1 spike protein as a potential vaccine vector and to probe the effects of spike protein on host cells. The spike protein expressed from this vector is functional in that it localizes to the surface of infected cells and induces fusion of ACE2-expressing cells. In immunized mice, the recombinant vector induced antibodies that bind to spike protein in an ELISA assay and that show neutralizing activity. The spike protein expressed from this vector can induce the expression of cytokines in an ACE2-independent, MyD88-dependent process. These results argue that the SARS-CoV-1 spike protein intrinsically activates signaling pathways that induce cytokines and contribute directly to the inflammatory process of SARS.


Subject(s)
Antibodies, Neutralizing/immunology , Herpesvirus 1, Human/genetics , Immunity, Innate , Severe acute respiratory syndrome-related coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cell Fusion , Cell Line , Cytokines/immunology , Genetic Vectors , Humans , Mice , Severe acute respiratory syndrome-related coronavirus/genetics , Signal Transduction , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vaccines, Virus-Like Particle/immunology , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL